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a  b  s  t  r  a  c  t

A  cathode  half cell  physics-based  model  for  a  St.  Jude  Medical  fabricated  silver  vanadium  oxide  (SVO)
cathode  coin  cell  battery  was  constructed.  The  model  is  based  on  a single  particle  Fick’s  second  law
approach  with  the  open-circuit  potential  modeled  with  a Redlich–Kister  equation.  By  assuming  that
lithium  ions  intercalate  only  through  the  ends  of  the  cuboid  SVO  particles,  the  model  is  able  to  predict
eywords:
ithium primary battery
VO
athode
athematical model

accurately  the  discharge  profile  of  experimental  cathode  half  cell  coin  cells.
© 2011 Elsevier B.V. All rights reserved.
edlich–Kister

. Introduction

Lithium ion silver vanadium oxide (Li-SVO) intercalation elec-
rode batteries are one of the most commonly used cells for

odern implantable cardiac defibrillator devices. The SVO reduc-
ion reaction observed during discharge has been characterized by
omadam et al. [1] as

(xG + yG)Li+ + (xG + yG)e− + Ag2
+V4

5+O11

→ LixG+yG
+Ag2−xG

+VyG
4+V4−yG

5+O11 + xGAg0

here xG goes from zero to two and yG goes from zero to four.
omadam et al. claim this reaction can be treated mathematically
s a combination of two parallel reactions [1].

GLi+ + xGe− + Ag2
+V4

5+O11 → LixG
+Ag2−xG

+V4
5+O11 + xGAg0

GLi+ + yGe− + Ag2
+V4

5+O11 → LiyG
+Ag2

+VyG
4+V4−yG

5+O11

The SVO model developed by Gomadam et al. [1] provided an
pproach to modeling of Li-SVO cathodes by using Butler–Volmer

quations to govern electrode kinetics for each reaction and then
inking the reaction current density to the depth of discharge (DoD)
hrough Faraday’s law. They made the following assumptions,

∗ Corresponding author. Tel.: +1 803 777 3270.
E-mail address: white@cec.sc.edu (R.E. White).
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1. The cathode limits battery capacity, such that there is excess Li
in the anode.

2. The cathode dominates battery resistance and contributions to
the resistance from the anode and separator are negligible.

3. The cathode is kinetically limited, meaning the ohmic and mass
transfer resistances are negligible, such that the reaction current
is uniform throughout the porous electrode.

4. The effects of heat generation, degradation, and parasitic reac-
tions are negligible.

5. The SVO particles are cylindrical in shape.

Their model was  limited by a purely empirical fit of the
open-circuit potential (OCP) as a function of DoD while also not
addressing potential diffusion limitations from mass transfer resis-
tance. Also, they indicated that in their hybrid SVO-CFx cathode
system, their assumption of negligible ohmic resistance was  valid
up until a particular value of a reaction current distribution param-
eter, determined by a ratio of the effective ohmic resistance to the
applied current density and based on the cathode design param-
eters. A later paper by Gomadam et al. [2] then expanded their
earlier model to include ohmic resistance effects. The paper in [2]
does not mention any considerations for mass transfer limitations,
however. If the assumption in [1] of no mass transfer resistances is
perpetuated in [2],  the basis for their limits of applicability may  be
incorrect.
In this work, a proprietary form of SVO developed by St. Jude
Medical (SJM) with a one reaction system is used:

7Li+ + 7e− + Ag2V4
5+O11 → Li7

+V2
4+V2

3+O11 + 2Ag0

dx.doi.org/10.1016/j.jpowsour.2011.07.057
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:white@cec.sc.edu
dx.doi.org/10.1016/j.jpowsour.2011.07.057
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Nomenclature

Ak Redlich–Kister coefficient (J mol−1)
Ap particle electrochemically active surface area (cm2)
C dimensionless lithium ion concentration
cLi lithium ion concentration (mol cm−3)
cLi,0 initial lithium ion concentration (mol cm−3)
ce electrolyte phase lithium ion concentration

(mol cm−3)
cLi,j,max maximum intercalatable lithium ion concentration

(mol cm−3)
cLi,j,avg average lithium ion concentration (mol cm−3)
cLi,j,surf surface lithium ion concentration (mol cm−3)
DLi concentration-dependent diffusion coefficient of

lithium ions into SVO (cm2 s−1)
E electrode potential (V)
F Faraday’s constant (96,485 C mol−1 e−)
GE excess Gibbs free energy (J)
H particle half-height (cm)
Iapp applied current (A)
ij current density for electrode j (A cm−2)
i0 exchange current density (A cm−2)
j positive (p) or negative (n) electrode
kj rate constant (cm2.5 mol−0.5 s−1)
K rate terms in Eqs. (23)–(25)
L particle length from center to one end (cm)
M number of terms in Redlich–Kister expansion
ma active mass of SVO (g)
MSV SVO molecular weight (g mol−1)
N number of nodes in method of lines
NLi net flux density of lithium ions into the particle

(mol Li+ cm−2 s−1)
ne number of electrons transferred during total reac-

tion
Rg ideal gas constant (8.314 J mol−1 K−1)
RLi rate of reaction (mol Li+ cm−3 s−1)
Rohm ohmic resistance (�)
sLi lithium ion stoichiometric coefficient for total reac-

tion
SEA electroactive surface area (cm2)
T temperature (K)
Tref reference temperature (K)
t time (s)
t+ initial time (s)
Un SVO open-circuit potential (V)
U0

n standard SVO open-circuit potential (V)
uLi mobility of Li+ (mol Li+ cm2 J−1 s−1)
Va volume active material (cm3)
Ve electrode volume (cm3)
Vp particle electrochemically active volume (cm3)
v velocity of the bulk fluid (cm s−1)
W particle half-width (cm)
xLi,n,surf surface depth of discharge as defined by Eq. (19) for

the negative electrode
xLi,n,avg average depth of discharge as defined by Eq. (26) for

the negative electrode
Z dimensionless distance from center of particle
zLi charge number of the reactive species
˛a,j anodic transfer coefficient for electrode j
˛c,j cathodic transfer coefficient for electrode j
ˇj symmetry coefficient
� bulk SVO density (g cm−3)
� dimensionless time
�j overpotential of electrode j (V)

ε cathode fraction active material
�Li,n,surf activity coefficient of intercalated lithium
ϕ1 solid-phase potential (V)
ϕ2 electrolyte-phase potential (V)

	Li inflection terms in Eqs. (23)–(25)

This paper extends the Gomadam et al. model by using the
single particle framework to model the transport within the parti-
cle, allowing for solid phase mass transfer limitations. The ohmic
resistance is also included on an order of magnitude basis from
experimental SJM data, rather than assuming a negligible ohmic
resistance within a range of applicability. In order to reduce the
dependence on empirical fits, the model presented here uses the
Redlich–Kister (R–K) equation to fit the open-circuit profile rather
than an empirical fit as performed by Gomadam et al.

Atlung et al. [3] presented a single particle (SP) model for an
intercalation electrode. They described a system of intercalation
electrodes using an electrolyte salt of the anode material and an
organic solvent. In such a system, cation transport was affected by
diffusion and migration effects, where the diffusion effects domi-
nated in the solid phase. Cell behavior was  then controlled by the
electrolyte–electrode interface concentrations of the ion. With this
in mind, Atlung et al. attempted to model the discharge profile of
intercalation electrode batteries based on the cathode particles and
their geometry. They assumed that the cation and electron fluxes
were uniform over the entire particle surface and that all cathode
particles were in contact with a current collector matrix. Under
these assumptions, they based their modeling on a single particle
of the cathode material [3].

The work done by Atlung et al. served as a basis for the SP mod-
eling approach. Haran et al. [4] expanded on the work by Atlung
et al. by proposing a general system of equations for solving lithium
intercalation into a SP intercalation electrode. The work done by
Haran et al. included work by Paxton and Newman [5] to solve
for the diffusion coefficient in such a system, but such work is not
applied in this paper due to the presence of plateaus in the OCP of Li-
SVO that Paxton and Newman claimed may  influence their method.
This paper also does not address resistive elements expanded on
in work by Zhang et al. [6] or the analytical solution for diffusion
applied by Guo et al. [7].

Several assumptions are made here when using the SP approach.
As presented by Santhanagopalan et al. [8],

1. The concentration of lithium ions in the electrolyte is large and
independent of position and time.

2. The ionic conductivity of the electrolyte is sufficient enough and
the flux of ions small enough that there is no potential drop in
the solution phase.

3. The electronic conductivity of the porous electrodes is large
enough and the current small enough such that there is no elec-
tronic potential gradient in the electrodes.

4. All the cathode particles are uniformly distributed throughout
the cathode and are of the same geometry.

Assumptions 1–4 guarantee that the difference in the potential
of the electrolyte and active material is independent of position.
Thus, the flux of lithium ions into each particle is independent of
the particle’s position. Therefore, a large number of the same size

particles with the same current density at the surface of the particle
can be used to represent the entire cathode. Also assumed for this
work:
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Fig. 1. SEM image of pure SVO crystals displaying cuboid geometry.

. That the oxidation of lithium metal in the anode occurs close to
the OCP of the Li/Li+ reaction and that there is a large excess of
lithium metal in the anode compared to the amount of lithium
that can be intercalated into the cathode.

The main advantage of applying the SP method over other
oncentration-based frameworks is the SP method provides a sim-
ler system of equations while giving accurate results for the C/100
253 �A) current load that will be examined in this work. The more
ignificant improvement is in using a concentration-based frame-
ork instead of using Faraday’s law to link the reaction current
ensity and DoD as done in the work by Gomadam et al. Through
he concentration-based framework, one can include mass trans-
er resistance limitations through diffusion into the particle, not
ddressed by Gomadam et al. This offers insight into how the con-
entration of Li+ varies inside the particle. In future work, this can
e expanded to account for relaxation from pulse effects during
ulse discharge.

. Modeling

.1. Mode of intercalation

A SEM image of SJM SVO particles, Fig. 1, indicates that the par-
icles are cuboid in shape instead of the assumption in work by
omadam et al. [1] that SVO particles were cylindrical in geom-
try. An idealized geometry of the SJM SVO particle is shown in
ig. 2 and has a length of 2L, a height of 2H, and a width of 2W. SEM
mages taken by Chen et al. [9] also show that along the length of
hese particles there are strata. The particles themselves have been
escribed as “tunnel-like” [10]. The work of Chen et al., combined
ith observations drawn from work by Takeuchi et al. [11], sup-
orts the hypothesis that lithium ions intercalate into the ends of
he particle along the length of these strata. However, the diffusion
ength from the end caps to the center of the particle is significantly
arger than from the sides of the particle to the center, which may
llow lithium ions to diffuse through the sides of the particle as
ell.

Thus, two limiting cases are raised, one case where interca-
ation only happens from the ends of the particle and one case

here intercalation only happens from the sides of the particle.

echanical processes used by SJM to grind SVO material down to

maller particle sizes are often rated by their ability to affect par-
icle length, with total particle length varying from a few microns
p to 100 �m.  Particle width and height also generally do not vary
Fig. 2. Example SVO particle, figure not drawn to scale.

by significant margins, typically only a few microns in size and are
unaffected by the grinding process. As such, in the interest of deter-
mining the effect of mechanical processing on discharge behavior,
this work will concern itself with the limiting case where interca-
lation only happens from the ends of the particle. Specifically, the
particle will be modeled such that Li+ intercalates from one end to
the center of the particle. The particle will therefore be treated as
a one-dimensional slab as seen in the simple line drawing in Fig. 3.

2.2. Fick’s second law

The material balance for a particle is described by Eqs. (1) and
(2).

∂cLi

∂t
= −∇ · N- Li + RLi (1)

N- Li = −zLiuLiFcLi∇�1 − DLi(cLi)∇cLi + cLiv- (2)

where NLi is the net flux density of lithium ions into the particle
(mol Li+ cm−2 s−1), cLi is the lithium ion concentration in the particle
(mol Li+ cm−3), RLi is the rate of reaction (mol Li+ cm−3 s−1), zLi is
the charge number of the reactive species, uLi is the mobility of Li+

(mol Li+ cm2 J−1 s−1), ϕ1 is the solid-phase potential (J), DLi is the
diffusion coefficient of lithium ions in the SVO particle (cm2 s−1) as
a function of lithium ion concentration, and v is the velocity of the
bulk fluid (cm s−1). Because this is a solid phase, v = 0, and due to
assumption 3, ∇�1 = 0. Also, since the reaction takes place at the
surface of the particle, RLi = 0. This reduces the material balance to
Eq. (3),  Fick’s second law.

∂cLi

∂t
= −∇ · (−DLi(cLi)∇cLi) = DLi(cLi)

(
∂2cLi

∂x2
+ ∂2cLi

∂y2
+ ∂2cLi

∂z2

)
+ [∇ · DLi(cLi)]∇cLi (3)

Eq. (3) can be simplified by assuming that diffusion occurs only
along the direction of the z-axis, the slab approximation.

∂cLi

∂t
= DLi(cLi) · ∂2cLi

∂z2
+ ∂DLi(cLi)

2
(4)
Li Li

At some initial time, t+, the concentration of lithium ions is some
initial value, cLi,0, due to some prior discharge to test for possible
cell failure before beginning normal discharge of the cell. The initial
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Fig. 3. Line drawing of SVO particle stud

oncentration is left as an adjustable parameter to be estimated
sing nonlinear least squares.

Li(z, t = t+) = cLi,0 (5)

Because symmetry was assumed there is no flux of lithium ions
t z = 0, the center of the slab [12].

∂cLi

∂z
(0, t) = 0 (6)

At the surface of the particle, z = L, the flux of lithium ions into
he particle is proportional to the current density:

∂cLi

∂z
(L, t) = − sLiIapp

neFDLi(cLi)SEA
(7)

here Iapp is the applied current (A), ne is the number of electrons
ransferred during the total reaction, sLi is the stoichiometric coef-
cient of Li+ in the overall reaction which is taken to be seven in
his paper (sLi = 7), F is Faraday’s constant (96485 C mol−1 e−), and
EA is the electroactive surface area of the particle (cm2).

The electroactive surface area, SEA, is defined as the electrochem-
cally active surface area of material within the electrode, or the
olume of active material within the electrode (εeVe) multiplied by
he ratio of electrochemically active surface area of the particle to
article volume (Ap/Vp) [7].

EA =
ApεeVe

Vp
(8)

here Ap is the active surface area of the particle, Vp is the volume of
he particle, Ve is the volume of the electrode, and εe is the volume
raction of active material. The volume fraction of active material
s defined as the volume of active material within the electrode
ivided by the total volume within the electrode. If the mass of
ctive material and the bulk density of the material are known, the
olume of active material, Va, can be determined via Eq. (9).

a = ma

�
(9)

Eq. (10) defines the volume fraction of active material.

e = Va

Ve
(10)

Depending on particle geometry, the surface area to volume
atio will change. For slab geometry, where the particle is treated
s a one-dimensional entity by assuming lithium only intercalates
hrough the ends of the particle, and examining the slab from its
enter to one end only, Eq. (11) applies.

p = 2(2H · 2W) Vp = 2L · 2W · 2H
Ap

Vp
= 1

L
(11)

Substituting Eqs. (9)–(11) into Eq. (8) expresses the electroactive
urface area as Eq. (12).

EA =
ma (12)

L�

Another way of expressing this equation is that the electroac-
ive surface area is the mass of active SVO material multiplied by
he electroactive specific surface area of the section of the particle
tercalation from one end to center only.

under examination. If one were to assume lithium ions intercalated
into the SVO particle from all directions, the electroactive surface
area to volume ratio would become the specific surface area of the
entire particle. Since the endcap intercalation limiting case is being
investigated in this paper, only the specific surface area of the ends
of the particle is utilized in the present model.

The boundary conditions defined by Eqs. (6) and (7) with the
previously defined governing equation, Eq. (4),  and initial con-
dition, Eq. (5),  provide the basis for determining lithium ion
concentration within the particle as a function of time and distance.
In order to increase the level of confidence in modeling results, the
present model is implemented in two  different programs, COMSOL
Multiphysics and MATLAB. COMSOL allows for a more automated
solution of systems of equations, whereas MATLAB gives greater
freedom in programming of solution steps. In order to allow for
changes in geometric properties in COMSOL without having to
reconstruct the particle geometry, the governing equation, initial
condition, and boundary conditions can be expressed in dimen-
sionless terms by introducing the dimensionless variables in Eq.
(13) [12].

C = cLi

cLi,0
− 1 Z = v

L
� = DLi(cLi)t

L2
(13)

Applying these variables to the governing equation, initial con-
dition, and boundary conditions gives Eqs. (14)–(17).

C(Z, � = �+) = 0 (14)

∂C

∂�
= ∂2C

∂Z2
+ 1

DLi(cLi)
∂DLi

∂C

(
∂C

∂Z

)2

(15)

∂C

∂Z
(0,  �) = 0 (16)

∂C

∂Z
(1,  �) = − sLiIappL

neFDLi(cLi)SEAcLi,0
(17)

These equations can then be placed into COMSOL Multiphysics
to solve for the dimensionless concentration as a function of
dimensionless distance and dimensionless time after specifying
the applied current, Iapp, initial concentration, cLi,0, and all other
parameters.

2.3. Reaction kinetics

The generalized electrochemical reactions for intercalation and
deintercalation at a solid/solution phase interface as described by
Guo et al. [7] are written as

Li − 	S
Deintercalation−→ Li+ + e− + 	S

Li − 	S ←−
Intercalation

Li+ + e− + 	S
where Li–	S is an intercalation site filled by a lithium ion and 	S
represents an unfilled intercalation site [7]. The rate of these reac-
tions can then be solved with Eq. (18), the Butler–Volmer equation
(Appendix A), based on the DoD at the surface of the particle, xLi,j,surf,
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subsequent regions. This has been reported previously within lit-
erature and attributed by Crespi and West to temporary insertion
of lithium ions into an alternative set of sites due to the slow rate of
712 D.A. Strange et al. / Journal of P

efined by Eq. (19) and the electrode overpotential, �j, defined by
q. (20) and neglecting the electrolyte potential.

j = kjFcLi,j,maxc0.5
e x0.5

Li,j,surf (1 − xLi,j,surf )0.5

×
{

exp

[
0.5F

RgT
�j

]
− exp

[
−0.5F

RgT
�j

]}
(18)

Li,j,surf =
cLi,j,surf

cLi,j,max
cLi,n,max =

sLi�

MSV
(19)

j = Ej − Uj (20)

here subscript j refers to the positive (p) or negative (n) elec-
rode, ij is the current density (A cm−2), kj is the rate constant
cm2.5 mol−1 s−1), cLi,j,max is the maximum concentration of lithium
ons that can be intercalated into the particle (mol cm−3), ce

s the concentration of lithium ions in the electrolyte phase
1E−03 mol  cm−3), � is the bulk density of SVO (4.789 g cm−3 [1]),

SV is the molecular weight of SVO (595.5 g mol−1), Ej is the elec-
rode potential (V), and Uj is the OCP (V) referenced to a Li/Li+

eference electrode. Because a Li/Li+ reference electrode is used for
j, the anode is lithium metal, and the current used is so small,

he anode potential is assumed to be negligible. Thus, the cathode
otential plus the ohmic resistance is the cell potential and anodic
erms are neglected. Including the dimensionless variables from Eq.
13) and the ohmic resistance, Eq. (18) can be rewritten as Eq. (21).

En = IappRohm + Un +
RgT

0.5F
a sinh

×
{

2Iapp

SEAFknce
0.5[cLi,0(C(1, �) + 1)]0.5[cLi,n,max − cLi,0(C(1, �) + 1)]0.5

}
(21)

where C(1,�) is the dimensionless concentration at the surface of
he particle and xLi,n,surf = cLi,0(C(1, �) + 1)/cLi,n,max.

.4. Open-circuit potential modeling

The OCP of Li-SVO changes over the course of DoD such that
ithout an accurate model of the OCP, the discharge profile can-
ot be properly modeled. The way in which the OCP changes with
oD at the surface of the particle, however, is a property of how

he material was fabricated, requiring fitting of an OCP model to
xperimental data. In literature, a purely empirical fit to the data
s sometimes used, such as in work by Gomadam et al. [1].  The
t in [1] is peculiar in that it splits the OCP data curve into two
eparate curves, each modeled with different equations that are
esigned to be run simultaneously. The resulting OCP curve from
he two equations working together, however, does not match up
dentically with the source data.

In order to minimize the level of empirical analysis and match
ore closely with available OCP data, another way of fitting the OCP

s used in this work. Karthikeyan et al. [13] showed that the OCP of a
ithium intercalation electrode can be accurately modeled using the
–K equation to estimate the excess Gibbs free energy (Appendix
). The resulting OCP equation when used in Eq. (21) is given by
q. (22), where DoD is defined by Eq. (19) as the Butler–Volmer
quation is only valid at the surface of the particle [13].

FUn = FU0
n + RgTref ln

(
1 − xLi,n,surf

xLi,n,surf

)
+

{
M∑

k=0

Ak·

[
k+1 2xLi,n,surf k(1 − xLi,n,surf )

]}

× (2xLi,n,surf − 1) −

(2xLi,n,surf − 1)1−k
(22)

The advantage of using the R–K fit over a purely empirical fit is
he R–K equation provides physical insight for why the OCP curve
Fig. 4. Comparison of the open-circuit potential modeled where non-idealities from
activity are ignored (Nernst equation) and accounted for (R–K equation).

changes over the DoD, relating the OCP behavior to electrochemi-
cal phenomena. Fig. 4 gives a comparison of the OCP of the SJM cell
under study where the non-idealities due to activity are ignored,
reducing the equation to the classical Nernst equation, and where
the non-idealities are accounted for in the full R–K equation. Work
done by Colclasure and Kee [14] demonstrate how the R–K method
could be expanded to estimate the activity coefficient and then
applied that to determine the exchange current density.

2.5. Parameter estimation

The R–K coefficients Ak and U0
n are considered unknown param-

eters in the model. Since SVO is sensitive to the manner in which it
is produced, the open-circuit profile is distinct for each method of
preparation. Fig. 5 is provided as an example of how the OCP  profile
for SVO can differ widely based on the manner in which the material
was  produced [1,15].  In order to allow the R–K equation to model
the OCP based on input data from a desired formulation of SVO, the
R–K coefficients are considered adjustable parameters and deter-
mined by performing a nonlinear least squares fit to experimental
OCP data using MATLAB and the MATLAB routine LSQNONLIN.

Focusing on fitting the first 70% DoD, one can observe from Fig. 6
that there is a difference between OCP and experimental discharge
data that is larger in the first 40% of discharge in comparison to
Fig. 5. Comparison of OCP profiles from SVO manufactured by SJM and Crespi et al.
[1,15].
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Table 1
Modeling constants.

Parameter Units Value

cLi,n,max mol  Li+ cm−3 5.629E−02
ce mol  Li+ cm−3 1E−03
Iapp A −253E−06
L cm 25E−04
ma g 0.0803
M  – 15
MSV g mol−1 595.5
N – 50
ne mol  e−mol−1 SVO 7
SEA cm2 6.707
T  K 310.15
Tref K 310.15

expansion out to seventeen terms, including U0
n and A0. The result-

ing fit is plotted in Fig. 7 and the R–K coefficient values tabulated in
Table 2. The fit extrapolates to the final reported DoD the coin cell
was  modeled to. Part of the attractiveness in using the R–K equation
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Fig. 6. Raw SJM OCP and C/100 (253 �A) SJM coin cell discharge data.

he thermodynamically preferred reaction [16]. In this paper, the
reater difference between OCP and experimental cell potential in
he first 40% DoD compared to the rest of discharge is used as an
id in fitting the diffusion coefficient, DLi, and rate constant, kn. The
ate constant is allowed to vary over the extent of discharge. The
ustification behind this is the reduction of silver to silver metal
ppears to have a significant effect on cell performance, also noted
n work by Gomadam et al. [1]. Eq. (23) is used to vary the rate con-
tant for this work and was derived based on best apparent fit to
he discharge data.

n(cLi) = kn,1 +
kn,2 − kn,1

1 + exp[−K1((cLi,n,surf /cLi,n,max) − 	Li,1)]

+ kn,3 − kn,2

1 + exp[−K2((cLi,n,surf /cLi,n,max) − 	Li,2)]
(23)

here the K terms define how quickly the equation changes
etween values and the 	Li terms refer to the inflection points

n the resulting curve. Similarly, the diffusion coefficient DLi has
een shown in literature to vary over the course of discharge. Data
or fitting the diffusion coefficient, however, are insufficient within
he literature. Results from Ramasamy et al. [17] show a diffusion
oefficient that monotonically decreases with DoD. Results from
akeuchi et al. [18], however, report a diffusion coefficient that
xperiences irregular spikes and dips as discharge proceeds. The
rregular behavior of the diffusion coefficient during discharge is
lso supported by results from Lee and Popov [19]. One should
ote that the results obtained by the Ramasamy, Takeuchi, and Lee
roups do not agree. This would imply a strong dependence on the
pecific mix  of SVO used. Since literature sources are inconsistent
nd there are insufficient experimental diffusion coefficient data
vailable to develop a detailed equation for the SVO mix  of interest,
n empirical equation is used. Eq. (24) is a function of Li+ concen-
ration in the particle and was developed along with Eq. (23) from
est apparent fit to discharge data.

Li(cLi) = DLi,1 +
DLi,2 − DLi,1

1 + exp[−K3((cLi(z)/cLi,n,max) − 	Li,3)]

+ DLi,3 − DLi,2

1 + exp[−K4((cLi(z)/cLi,n,max) − 	Li,4)]
(24)
MATLAB and LSQNONLIN can be used to fit the parameters to the
ata with a nonlinear least squares fit. The rate constant, diffusion
oefficient, and initial concentration were fitted simultaneously.
qs. (4)–(7) were solved using the method of lines with 50 node
ˇj – 0.5
� g  cm−3 4.789
sLi mol  Li+ mol−1 SVO 7

points in MATLAB (Appendix C) and the finite element technique
in COMSOL.

The assumption is made in work by Gomadam et al. that the
effect of ohmic resistance is negligible at low current loads. In this
work, the ohmic resistance is included and allowed to vary over
depth of discharge through Eq. (25). Since resistance data were
unavailable for the fitted coin cell, using Eq. (25) with the parame-
ters defined in Table 3 allows for an ohmic resistance on the order
of magnitude seen in similar SJM SVO coin cells. Additionally, all
values of K and 	Li used in Eqs. (23)–(25) were set arbitrarily to
roughly represent observed reaction steps in work by Leising et al.
[10].

Rohm(cLi) = Rohm,1 +
Rohm,2 − Rohm,1

1 + exp[−K5((cLi,n,surf /cLi,n,max) − 	Li,5)]

+ Rohm,3 − Rohm,2

1 + exp[−K6((cLi,n,surf /cLi,n,max) − 	Li,6)]
(25)

3. Results

The model developed in this work was  applied to a coin cell
described in Table 1 with experimental discharge data shown in
Fig. 6. The OCP of the cell is independent of any changes to SVO
mass or particle length and is modeled using MATLAB to fit the R–K
Depth of discharge

Fig. 7. Modeled OCP compared to experimental SJM OCP data.
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Table 2
Redlich–Kister coefficients for SJM SVO determined through parameter estimation.
U0

n is in V and the R–K coefficient terms are in units J mol−1.

Parameter Value

U0
n 2.608

A0 −4.576E+04
A1 6.621E+03
A2 −4.578E+04
A3 −4.700E+04
A4 3.298E+05
A5 −1.872E+05
A6 −2.034E+06
A7 5.935E+05
A8 6.575E+06
A9 5.883E+05
A10 −1.097E+07
A11 −3.529E+06
A12 8.993E+06
A13 4.067E+06
A14 −2.877E+06
A15 −1.521E+06
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Fig. 9. Fitted MATLAB model compared to SJM OCP data and C/100 (253 �A) SJM
coin cell data.

Table 3
Estimated discharge fitting parameters for SJM discharge data.

Parameter Units Value

cLi,0 mol Li+ cm−3 7.506E−05
kn,1 cm2.5 mol−0.5 s−1 3.781E−06
kn,2 cm2.5 mol−0.5 s−1 2.662E−07
kn,3 cm2.5 mol−0.5 s−1 1.873E−06
DLi,1 cm2 s−1 3.897E−10
DLi,2 cm2 s−1 7.969E−11
DLi,3 cm2 s−1 2.570E−08
Rohm,1 � 13.07
Rohm,2 � 10.07
Rohm,3 � 7.063
K1 – 50
K2 – 10
K3 – 50
K4 – 100
K5 – 100
K6 – 30
	Li,1 – 0.100
	Li,2 – 0.380
	Li,3 – 0.090
	Li,4 – 0.340
	Li,5 – 0.150
Depth of discharge  x Li,n ,avg

ig. 8. Activity coefficient determined using estimated Redlich–Kister parameters.

s that it can be related back to the activity coefficient (Appendix
) [13,14]. The activity coefficient is plotted versus average particle
oD, defined by Eq. (26), in Fig. 8.

Li,n,avg =
cLi,n,avg

cLi,n,max
(26)

In work done by Leising et al. [10], the claim is made that elec-
rochemical activity of a Li-SVO cell is dominated by reduction of
ilver to silver metal, which lasts until around 34% DoD. This is
epresented in Fig. 8 as a very low activity coefficient, meaning
here is a very strong tendency for Li+ to intercalate into SVO. In
he region from 34% to 54% DoD, Leising et al. claims the electro-
hemical activity switches to a purely V5+ to V4+ reduction, reflected
s a higher activity coefficient in Fig. 8. After 54% DoD, Leising et al.
tates there is a competition between reducing V5+ to V4+ and V4+ to
3+. The OCP drops gradually in this region up until around 74% DoD,
hen a more dramatic drop in potential begins to occur, leading to

he conclusion that the V4+ to V3+ reduction becomes dominant at
his point. In Fig. 8, the activity coefficient also rapidly begins to
pproach unity after around 74% DoD. Thus, the activity coefficient
s demonstrating the sudden drop in useful capacity beyond 74%
oD as lithium ions become more difficult to intercalate into SVO.
hese results provide a basis for using the 74% DoD mark as an end
f life indicator for the cell, which is also used by SJM.
Both MATLAB and COMSOL can now be used to show the concen-
ration and discharge profiles with both time and position within
he particle. First consider the previously described coin cell under
onstant discharge. MATLAB is used to perform parameter estima-
	Li,6 – 0.300

tion and fit the model to the experimental data. The resulting fit
is shown in Fig. 9, where DoD is based on Eq. (26), with param-
eter values in Table 3. The modeled fit very closely matches the
experimental data except for the region from 5% to 10% DoD. The
discrepancy between the model predictions and the experimental
data is attributed to inaccuracies in how the rate constant, plot-
ted in Fig. 10,  and diffusion coefficient, plotted in Fig. 11 on a log
scale, are determined. Fig. 12 plots the diffusion coefficient calcu-
lated from Eq. (24) on a log scale versus cell potential and compares
those results to results reported by Lee and Popov [19]. One should
note that the SVO used in the work by Lee and Popov may  be con-
siderably different from the SJM SVO studied in this paper, and also
approaches the diffusivity from an electrode basis rather than a
single particle that has been limited to intercalation from one end
only. From the comparison, a conclusion could be drawn that the
diffusion coefficient as calculated by Eq. (24) should start at a value
several orders of magnitude higher and then decrease as the DoD
approaches 10%. Increasing the complexity of the empirical equa-

tions utilized is expected to resolve the discrepancy. Fig. 13 shows
how the concentration within the particle varies across the length
of the particle at a single point in time. This leads to the conclu-
sion that on the chosen current load, the concentration across the
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Fig. 11. Diffusion coefficient varying with discharge based on Eq. (24) and estimated
parameters.
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Fig. 14. Comparison between Gomadam et al. and MATLAB fits to Gomadam et al.
1000  �A discharge data [1].

length of the particle could be considered constant. Even at the
low 253 �A current load chosen, however, the effect of the con-
centration gradient across the particle on the discharge profile and
estimated parameter values was determined to be significant.

In order to be confident in the validity of the numerical results,
the MATLAB model results were also compared against results
generated by COMSOL Multiphysics, which numerically solves for
Fick’s second law using a finite element technique. Using parame-
ter values estimated with MATLAB in the COMSOL model, the cell
potential vs. DoD results were compared to determine the error
between the two programs. The comparison indicated the two
models differed by 0.05% at most. Having established confidence
in the model reporting nearly identical results in two solution pro-
grams, the model is compared versus the Gomadam et al. model [1]
to determine if the new model more accurately fits experimental
data. Fig. 14 plots cell potential versus time for the 1000 �A experi-
mental discharge data used by Gomadam et al., the fit they achieved
to the data, and the fit achieved with the new model using param-
eter values in Tables 4, 5 and 6 . The data for the Gomadam et al.

fit was taken directly from their plot as the fit given in their paper
was  unable to be replicated by the authors of this paper. The new
model appears to fit accurately the Gomadam et al. discharge data
better than or at least as well as the model reported in their work.
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Table 4
Modeling constants for Gomadam et al. [1] cell.

Parameter Units Value

cLi,n,max mol  Li+ cm−3 4.825E−02
ce mol  Li+ cm−3 1E−03
Iapp A −1000E−06
L  cm 5E−05
ma g 5.109
M  – 15
MSV g mol−1 595.5
N – 50
ne mol  e−mol−1 SVO 6
SEA cm2 2.134E+04
T  K 310.15
Tref K 310.15
ˇj – 0.5
� g  cm−3 4.789
sLi mol  Li+ mol−1 SVO 6

Table 5
Redlich–Kister coefficients for Gomadam et al. [1] SVO determined through param-
eter estimation. U0

n is in V and the R–K coefficient terms are in units J mol−1.

Parameter Value

U0
n 2.902

A0 −2.908E+04
A1 7.992E+03
A2 4.055E+04
A3 −1.039E+05
A4 −1.930E+05
A5 7.446E+05
A6 3.898E+05
A7 −2.998E+06
A8 1.267E+05
A9 6.887E+06
A10 −1.912E+06
A11 −9.024E+06
A12 2.726E+06
A13 6.244E+06
A14 −1.203E+06
A15 −1.733E+06

Table 6
Estimated discharge fitting parameters for Gomadam et al. [1] 1000 �A discharge
data.

Parameter Units Value

cLi,0 mol Li+ cm−3 3.749E−06
kn,1 cm2.5 mol−0.5 s−1 2.081E−09
kn,2 cm2.5 mol−0.5 s−1 9.164E−11
kn,3 cm2.5 mol−0.5 s−1 9.418E−11
DLi,1 cm2 s−1 7.600E−15
DLi,2 cm2 s−1 1.405E−15
DLi,3 cm2 s−1 5.158E−15
Rohm,1 � 13.07
Rohm,2 � 10.07
Rohm,3 � 7.063
K1 – 30
K2 – 150
K3 – 100
K4 – 20
K5 – 100
K6 – 30
	Li,1 – 0.100
	Li,2 – 0.340
	Li,3 – 0.300
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L = 2.5 um
L = 10 um
L = 25 um
L = 50 um
	Li,4 – 0.540
	Li,5 – 0.150
	Li,6 – 0.300

A final point of interest is the effect of mechanical processing

f the SVO material on the discharge profile. This was done for the
tudied coin cell by altering the diffusion length of the particle, L,
ith results plotted in Fig. 15.  Smaller particle sizes improve per-

ormance of the cell, but also of note is that particle length affects
Fig. 15. Effect of particle diffusion length on discharge profile at C/100 (253 �A)
discharge.

discharge behavior in the first 40% of discharge. Were the length
of the particle to change during discharge, accounting for how the
length changes could play a significant role in modeling. A distri-
bution of particle sizes might also exist as opposed to the present
model which assumes all particles have the same size.

4. Conclusions

Using the R–K equation an excellent fit to experimental OCP data
from SJM Li-SVO cells was  obtained, eliminating the need to use
empirical equations to model the OCP. Use of the R–K equation is
supported by activity results consistent with literature sources and
industry standards. The single particle model using Fick’s second
law can be used to determine cell parameters (kn,1, DLi,1, DLi,2, etc.)
and also predict cell behavior during discharge.

5. Future work

As previously mentioned, the method of determining the dif-
fusion coefficient requires further refinement. Examination of
discharge behavior on a different path of intercalation (i.e. from
the sides) was also considered, but was  not done in this paper.
While there is evidence to support the limiting case where lithium
ions intercalate only through the ends of the particle, no absolute
determination has been made. Examining the particle assuming a
limiting case where lithium intercalates only through the sides of
the particle or relaxing the limits and letting lithium intercalate
from all directions into the particle may  allow for constructing a
more accurate model.
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Appendix A.

The generalized electrochemical reactions for intercalation and
deintercalation at a solid/solution phase interface as described by

Guo et al. [7] are written as

Li − 	S
Deintercalation−→ Li+ + e− + 	S
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i − 	S ←−
Intercalation

Li+ + e− + 	S

here Li–	S is an intercalation site filled by a lithium ion and 	S rep-
esents an unfilled intercalation site [7].  The concentration of filled
ites on the surface of the particle is the same as the concentration
f lithium ions on the surface, giving Eq. (A.1).

Li−	S
= cLi,j

∣∣
z=L
= xLi,j,surf cLi,j,max (A.1)

ere, subscript j refers to the positive (p) or negative (n) electrode.
he concentration of unfilled sites is then described by Eq. (A.2).

	S
= cLi,j,max − cLi,j

∣∣
z=L
= (1 − xLi,j,surf )cLi,j,max (A.2)

Taking into account the first assumption made for the SP
pproach, the electrolyte lithium ion concentration, ce, is also kept
onstant at 1E−03 mol  Li+ cm−3 [7].

The current density for the deintercalation and intercalation
eactions can then be described by Eqs. (A.3) and (A.4), assuming a
egligible electrolyte potential.

j = �kj
ne

sLi
FcLi,j,maxxLi,j,surf exp

[
˛a,jF

RgT
(�1,j − �2,j)

]
(A.3)

j = �kj
ne

sLi
FcLi,j,maxce(1 − xLi,j,surf )exp

[
−˛c,jF

RgT
(�1,j − �2,j)

]
(A.4)

here the kj terms are the deintercalation (→)  and intercalation
←) rate constants for electrode j, respectively; ˛a,j is the anodic
ransfer coefficient for the deintercalation reaction at electrode j;
nd ˛c,j is the cathodic transfer coefficient for the intercalation
eaction at electrode j. An exchange current density can also be
escribed as the reaction current density at open-circuit conditions,
r when ϕ1,j− ϕ2,j = Uj.

0,j,1 = �kj
ne

sLi
FcLi,j,maxxLi,j,surf exp

[
˛a,jF

RgT
Uj

]
(A.5)

0,j,2 = �kj
ne

sLi
FcLi,j,maxce(1 − xLi,j,surf )exp

[
−˛c,jF

RgT
Uj

]
(A.6)

0,j,1 = i0,j,2 = i0,j (A.7)

If one assumes ˛a,j + ˛c,j = 1, the exponential terms in Eqs. (A.5)
nd (A.6) can be removed by raising Eq. (A.5) to the ˛c,j, raising Eq.
A.6) to the ˛a,j, and multiplying the two together. If the condition
n Eq. (A.7) is also taken into account, Eq. (A.8) is formed.

0,j = (i0,j,1)˛c,j (i0,j,2)˛a,j = �k˛c,j
j

�k˛a,j
j

ne

sLi
FcLi,j,maxc˛a,j

e x˛c,j
Li,j,surf

× (1 − xLi,j,surf )˛a,j exp

[
˛a,j˛c,j

RgT
Uj

]
exp

[
−˛a,j˛c,j

RgT
Uj

]
(A.8)

The exchange current density can then be rewritten as Eq. (A.9),
ssuming the rate constant kj = �k˛c,j

j
�k˛a,j

j
[7].

0,j = kj
ne

sLi
FcLi,j,maxc˛a,j

e x˛c,j
Li,j,surf (1 − xLi,j,surf )˛a,j (A.9)

The current density equations can be rewritten in terms of the
xchange current density.

j = i0,jexp

[
˛a,jF (�1,j − �2,j − Uj)

]
(A.10)
RgT

j = −i0,jexp

[
−˛c,jF

RgT
(�1,j − �2,j − Uj)

]
(A.11)
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The electrode overpotential, or drop from open-circuit condi-
tions due to losses, is described as:

�j = �1,j − �2,j − Uj (A.12)

Eq. (A.12) can then be substituted back into Eqs. (A.10)
and (A.11).  The net current produced by the intercala-
tion/deintercalation reaction is therefore:

ij = �ij + �ij = i0,j

[
exp

(
˛a,jF

RgT
�j

)
− exp

(
−˛c,jF

RgT
�j

)]

= kj
ne

sLi
FcLi,j,maxc˛a,j

e x˛c,j
Li,j,surf (1 − xLi,j,surf )˛a,j

×
[

exp

(
˛a,jF

RgT
�j

)
− exp

(
−˛c,jF

RgT
�j

)]
(A.13)

Eq. (A.13) is also known as the Butler–Volmer equation [7].
For the Li-SVO reaction under consideration and neglecting the

electrolyte phase potential, the electrode overpotential is defined
by Eq. (A.14).

�j = Ej − Uj (A.14)

Here, Ej is the electrode potential (V). Because a Li/Li+ reference
electrode is used for Uj, the anode is lithium metal, and the current
used is so small, the anode potential is assumed to be negligible.
Thus, the cathode potential plus the ohmic resistance term is the
cell potential. The anodic and cathodic transfer coefficients are also
redefined as the symmetry coefficient, ˇj, multiplied by ne/sLi. With
the symmetry coefficient held constant at 0.5 and ne/sLi held con-
stant at one, Eq. (A.13) becomes Eq. (A.15).

in = knFcLi,n,maxc0.5
e x0.5

Li,n,surf (1 − xLi,n,surf )0.5

×

⎧⎪⎪⎨
⎪⎪⎩

exp

[
0.5F

RgT
(En − Un)

]

−exp

[
−0.5F

RgT
(En − Un)

]
⎫⎪⎪⎬
⎪⎪⎭ (A.15)

The current density is defined through Eq. (A.16) as the applied
current divided by the electroactive surface area.

in =
Iapp

SEA
(A.16)

Eq. (A.15) can be rewritten as Eq. (A.17).

En = IappRohm + Un +
RgT

0.5F
a sinh

×
{

2Iapp

SEAFknce
0.5[cLi,0(C(1, �) + 1)]0.5[cLi,n,max − cLi,0(C(1, �) + 1)]0.5

}
(A.17)

Appendix B.

An examination of electrochemical potentials allows for an
alternative method for estimating the OCP of lithium intercala-
tion electrodes, though in-depth analyses of these potentials are
beyond the scope of this work. The method replicated here was
developed by Karthikeyan et al. [13], restricted in scope in this
paper to estimating the OCP. First, the intercalation electrode equi-
librium potential relative to a lithium reference electrode can be

represented by Eq. (B.1), where  ̨ refers to the intercalated species
and  ̌ refers to vacant sites [13].

ne

sLi
FUn = �0

Li + �ˇ − �˛ (B.1)
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ere, the electrochemical potential �i of species i can be expressed
n terms of an activity coefficient, mole fraction, and reference elec-
rochemical potential via Eq. (B.2).

i = �0
i + RgT ln(�ixi) (B.2)

here subscript i refers to  ̨ or ˇ. Eq. (B.2) can be substituted into
q. (B.1) resulting in Eq. (B.3), which can be used to represent the
CP profile.

ne

sLi
FUn = �0

Li + �0
ˇ − �0

˛ + RgT ln
(xˇ

x˛

)
+ RgT ln

(�ˇ

�˛

)
= ne

sLi
FU0

n + RgT ln
(xˇ

x˛

)
+ RgT ln

(�ˇ

�˛

)
(B.3)

If unit activity is assumed, Eq. (B.3) reduces to the classic Nernst
quation, Eq. (B.4) [13].

ne

sLi
FUn = ne

sLi
FU0

n + RgT ln
(xˇ

x˛

)
(B.4)

If unit activity is not assumed, the activity coefficients can be
elated back to the partial molar excess Gibbs free energy through
q. (B.5).

gT ln(�i) = gE
i =

∂

∂ni
(ntGE)T,P,l /=  i (B.5)

Here, subscript l refers to  ̨ or ˇ. The R–K equation can then be
sed to approximate the excess Gibbs free energy [13].

E = x˛,nxˇ,n

M∑
k=0

Ak(x˛,n − xˇ,n)k

= x˛,n(1 − x˛,n)
M∑

k=0

Ak(2x˛,n − 1)k (B.6)

Eq. (B.6) can be substituted back into Eqs. (B.3) and (B.5) to
btain Eq. (B.7). Eq. (B.7) is the form used in Eq. (21) for the OCP.

ne

sLi
FUn = ne

sLi
FU0

n + RgTref ln

(
1 − xLi,n,surf

xLi,n,surf

)

+
{

M∑
k=0

Ak ·
[

(2xLi,n,surf − 1)k+1 − 2xLi,n,surf k(1 − xLi,n,surf )

(2xLi,n,surf − 1)1−k

]}
(B.7)

One can also solve for the activity coefficient of the intercalated
aterial via Eq. (B.8) [13].

gT ln(�Li,n,surf ) =
M∑

Ak(1 − xLi,n,surf )2(2xLi,n,surf − 1)k
k=0

×
[

2xLi,n,surf k

(2xLi,n,surf − 1)
+  1

]
(B.8)
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Appendix C.

The treatment of the governing equation, Eq. (4),  and boundary
conditions, Eqs. (6) and (7),  while utilizing MATLAB deserves men-
tion, as MATLAB does not automatically solve for Fick’s second law
whereas COMSOL does. Instead, Fick’s second law is broken apart
from a partial differential equation into a series of ordinary differ-
ential equations using the method of lines approach. This divides
the particle along its length into individual nodes, calculating the
concentration at each point. For the modeling performed in this
work, N = 50 nodes are used. Defining the center of the particle as
the first node, m = 1, and the surface of the particle as the last node,
m = N = 50, Eq. (C.1) solves for the central nodes.

dcLi,n,m

dt
= DLi

(cLi,n,m−1 − 2cLi,n,m + cLi,n,m+1)

(L/(N − 1))2
m = 2, N − 1 (C.1)

where L/(N − 1) breaks the particle into equal-length segments and
L is the half-length of the particle (cm). The boundary conditions
at the center of the particle, Eq. (C.2), and at the surface, Eq. (C.3),
are also included, using forwards and backwards finite difference
techniques, respectively.

DLi(cLi,n,1)
dcLi,n,1

dz
= DLi(cLi,n,1)

3cLi,n,1 − 4cLi,n,2 + cLi,n,3

2(L/(N  − 1))
= 0 (C.2)

DLi(cLi,n,N)
dcLi,n,N

dz
= − DLi(cLi,n,N)

3cLi,n,N − 4cLi,n,N−1 + cLi,n,N−2

2(L/(N  − 1))

− IappsLi

neFSEA
= 0 (C.3)
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